

PRODUCT SPECIFICATION

Product Name	TBSF15-3-12gSC-3i-FT
Product Model	1.25Gbps SFP Bi-Di Transceiver, 3km Reach TX1550 / RX1310nm

28, Politekhnicheskaya. St. Petersburg, 194064, Russia.

Optronic TBSF15-3-12gSC-3i-FT 1.25Gbps SFP Bi-Di Transceiver, 3km Reach

TX1550 / RX1310nm

Features

- Up to 1.25Gbps bi-directional data links
- ◆ 1550nm FP laser and PIN photo detector for 3km transmission
- ◆ Compliant with SFP MSA, INF-8074 and SFF-8472 with single SC receptacle
- ◆ Digital Diagnostic Monitoring: Internal Calibration or External Calibration
- Metal enclosure, for lower EMI
- Compatible with RoHS
- ♦ +3.3V single power supply
- Operating case temperature: -40 to +85°C

Application

- ♦ Fiber Channel
- Switch to Switch interface
- Switched backplane applications
- ♦ Router/Server interface
- Other optical transmission systems

Description

SFP 3KM 1550/1310 Small Form Factor Pluggable (SFP) transceivers are compatible with the Small Form Factor Pluggable Multi-Sourcing Agreement (MSA), The transceiver consists of five sections: the LD driver, the limiting amplifier, the digital diagnostic monitor, the FP laser and the PIN photo-detector .The module data link up to 3km in 9/125um single mode fiber.

The optical output can be disabled by a TTL logic high-level input of Tx Disable, and the system also can disable the module via I2C. Tx Fault is provided to indicate that degradation of the laser. Loss of signal (LOS) output is provided to indicate the loss of an input optical signal of receiver or the link status with partner. The system can also get the LOS (or Link)/Disable/Fault information via I2C register access.

28, Politekhnicheskaya. St. Petersburg, 194064, Russia.

Specification

Absolute Maximum Ratings						
Parameter Symbol Min Max Unit						
Supply Voltage	Vcc	0	4	V		
Damage Threshold	THd		5	dBm		
Storage Temperature	Ts	-40	+85	°C		
Operating Humidity	-	5	95	%		

Recommended Operating Conditions							
Parameter		Symbol	Min	Typical	Max	Unit	
Operating Case Temperature	Standard	Тс	-5		+70	°C	
	Industrial		-40		+85	°C	
Power Supply Voltage		Vcc	3.13	3.3	3.47	V	
Power Supply Current		Icc			280	mA	
Control Input Voltage High			2		Vcc	V	
Control Input Voltage Low			0		0.8	V	
Data Rate				1.25		Gbps	

Optical and Electrical Characteristics							
Para	meter	Symbol	Min	Typical	Max	Unit	Notes
			Transmitte	er			
Centre W	avelength	λс	1530	1550	1570	nm	
Spectral W	/idth (RMS)	Δλ			3.5	nm	
Average O	utput Power	Pout	-10		-3	dBm	1
Extincti	on Ratio	ER	8			dB	
Optical Rise/Fall Time (20%~80%)		tr/tf			100	ps	
Transmit Disab	le Assert Time			5		us	
Data Input Swing Differential		V _{IN}	200		2400	mV	2
Input Differential Impedance		Z _{IN}	90	100	110	Ω	
TX Disable	Disable		Vcc-1.3		Vcc	V	

28, Politekhnicheskaya. St. Petersburg, 194064, Russia.

				9	T		1
	Enable		Vee-0.3		0.8	V	
TV = 1:	Fault		2.0		Vcc	V	
TX Fault	Normal		0		0.8	V	
			Receiver				
Centre W	/avelength	λc	1290	1310	1330	nm	
Receiver	Sensitivity				-20	dBm	3
Receiver Overload			-3			dBm	3
LOS De-Assert		LOS _D			-21	dBm	
LOS Assert		LOSA	-36			dBm	
LOS Hysteresis			1		4	dB	
Data Output Swing Differential		Vout	500		900	mV	4
LOS		High	Vcc-1.3		Vcc	V	
		Low	Vee-0.3		0.8	V	

Notes:

- 1. The optical power is launched into SMF.
- 2. PECL input, internally AC-coupled and terminated.
- 3. Measured with a PRBS 2^7 -1 test pattern @1250Mbps, BER $\leq 1 \times 10^{-12}$.
- 4. Internally AC-coupled.

Diagnostics

Parameter	Range	Unit	Accuracy	Calibration	
Tomporaturo	0 to +70	°C	±3°C	Internal / External	
Temperature	-40 to +85	O	±3 C	Internal / External	
Voltage	3.0 to 3.6	V	±3%	Internal / External	
Bias Current	0 to 100	mA	±10%	Internal / External	
TX Power	-11 to -3	dBm	±3dB	Internal / External	
RX Power	-4 to -20	dBm	±3dB	Internal / External	

Digital Diagnostic Memory Map

The transceivers provide serial ID memory contents and diagnostic information about the present operating conditions by the 2-wire serial interface (SCL, SDA).

The diagnostic information with internal calibration or external calibration all are

28, Politekhnicheskaya. St. Petersburg, 194064, Russia.

implemented, including received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring.

The digital diagnostic memory map specific data field defines as following.

Pin Definitions

Pin Diagram

20	VeeT	1 VeeT			
19	TD-	2 TxFault			
18	TD+	3 Tx Disable			
17	VeeT	4 MOD-DEF(2)			
16	VccT	5 MOD-DEF(1)			
15	VccR	6 MOD-DEF(0)			
14	VeeR	7 Rate Select			
13	RD+	8 Los			
12	RD-	9 VeeR			
11	VeeR	10 VeeR			
	Top of Board (as viewed thru top of board)				

28, Politekhnicheskaya. St. Petersburg, 194064, Russia.

Pin Descriptions

Pin	Signal Name	Description	Plug Seq.	Notes
1	V _{EET}	Transmitter Ground	1	
2	TX FAULT	Transmitter Fault Indication	3	Note 1
3	TX DISABLE	Transmitter Disable	3	Note 2
4	MOD_DEF(2)	SDA Serial Data Signal	3	Note 3
5	MOD_DEF(1)	SCL Serial Clock Signal	3	Note 3
6	MOD_DEF(0)	TTL Low	3	Note 3
7	Rate Select	Not Connected	3	
8	LOS	Loss of Signal	3	Note 4
9	V_{EER}	Receiver ground	1	
10	V_{EER}	Receiver ground	1	
11	V _{EER}	Receiver ground	1	
12	RD-	Inv. Received Data Out	3	Note 5
13	RD+	Received Data Out	3	Note 5
14	V_{EER}	Receiver ground	1	
15	V_{CCR}	Receiver Power Supply	2	
16	V _{CCT}	Transmitter Power Supply	2	
17	V _{EET}	Transmitter Ground	1	
18	TD+	Transmit Data In	3	Note 6
19	TD-	Inv. Transmit Data In	3	Note 6
20	V _{EET}	Transmitter Ground	1	

Notes:

Plug Seq.: Pin engagement sequence during hot plugging.

- 1) TX Fault is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; Logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.
- 2) TX Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7k\sim10k\Omega$ resistor. Its states are:

Low (0 to 0.8V): Transmitter on (>0.8V, < 2.0V): Undefined

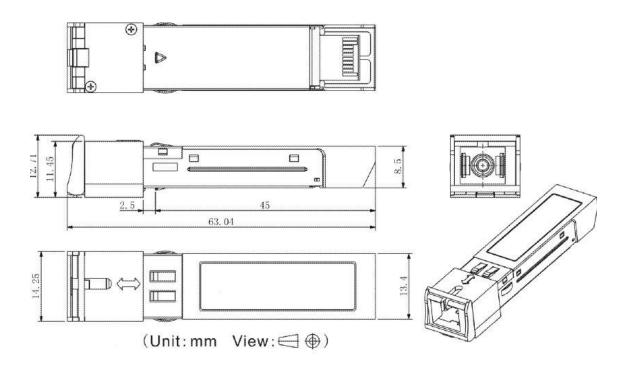
High (2.0 to 3.465V): Transmitter Disabled

Open: Transmitter Disabled

3) Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a $4.7k\sim10k\Omega$ resistor on the host board. The pull-up voltage shall be VccT or VccR.

Mod-Def 0 is grounded by the module to indicate that the module is present

Mod-Def 1 is the clock line of two wire serial interface for serial ID Mod-Def 2 is the data line of two wire serial interface for serial ID


28, Politekhnicheskaya. St. Petersburg, 194064, Russia.

- 4) LOS is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor. Pull up voltage between 2.0V and Vcc+0.3V. Logic 1 indicates loss of signal; Logic 0 indicates normal operation. In the low state, the output will be pulled to less than 0.8V.
- 5) RD-/+: These are the differential receiver outputs. They are internally AC-coupled 100 differential lines which should be terminated with 100Ω (differential) at the user SERDES.
- 6) TD-/+: These are the differential transmitter inputs. They are internally AC-coupled, differential lines with 100Ω differential termination inside the module.

Package Outline

Dimensions are in millimeters. All dimensions are ± 0.2 mm unless otherwise specified. (Unit: mm)

28, Politekhnicheskaya. St. Petersburg, 194064, Russia.